Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1.

نویسندگان

  • Wei Qu
  • Yufei Wang
  • Qining Wu
  • Jijun Liu
  • Dingjun Hao
چکیده

UNLABELLED The anti-cancer effects of emodin, including inhibition of proliferation, invasion, metastasis and angiogenesis, were confirmed by various previous studies. However, the specific mechanisms were not clear. In this study, we investigated emodin's anti-angiogenesis effect and focused on the mechanisms in human osteosarcoma (OS). OS cells were implanted to nude mice to form OS xenografts. Immunofluorescence assay was used to assess vWF expression in tumor tissue. MTT assay was employed to screen proper emodin concentrations unrelated with proliferation inhibition. siRNA technique was utilized to silence SIRT1 expression in OS cells. Expression levels of SIRT1 and VEGF were investigated by real-time PCR and western blotting. H4-k16Ac expression which indicated the deacetylation activity of SIRT1 was also detected by western blotting. As in results, HMGB1 treatment exacerbated OS angiogenesis both in vivo and in vitro. Emodin administration attenuated angiogenesis in both OS and HMGB1 treated OS in vivo and in vitro. After emodin treatment, the expression level and deacetylation activity of SIRT1 were dramatically enhanced. HMGB1-induced angiogenesis was more striking in SIRT1 silenced OS cells. SIRT1 silencing also impaired the anti-angiogenesis effect of emodin in OS cells. IN CONCLUSION SIRT expression and deacetylation activity elevation are involved in emodin's anti-angiogenesis effect in human OS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of HMGB1-Induced Angiogenesis by Cilostazol via SIRT1 Activation in Synovial Fibroblasts from Rheumatoid Arthritis

High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arth...

متن کامل

Antitumor Activity of Emodin against Pancreatic Cancer Depends on Its Dual Role: Promotion of Apoptosis and Suppression of Angiogenesis

BACKGROUND Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. METHODOLOGY/PRINCIPAL FINDING In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apopto...

متن کامل

Salidroside Inhibits HMGB1 Acetylation and Release through Upregulation of SirT1 during Inflammation

HMGB1, a highly conserved nonhistone DNA-binding protein, plays an important role in inflammatory diseases. Once released to the extracellular space, HMGB1 acts as a proinflammatory cytokine that triggers inflammatory reaction. Our previous study showed that salidroside exerts anti-inflammatory effect via inhibiting the JAK2-STAT3 signalling pathway. However, whether salidroside inhibits the re...

متن کامل

Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia

Inflammatory signal-mediated release of high-mobility group box 1 (HMGB1) is a damage-associated molecular pattern or alarmin. The inflammatory functions of HMGB1 have been extensively investigated; however, less is known about the mechanisms controlling HMGB1 release. We show that SIRT1, the human homolog of the Saccharomyces cerevisiae protein silent information regulator 2, which is involved...

متن کامل

Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner

Background The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2015